Browsing by Author "Gustavo Zaparoli"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao(Elsevier, 2007) Odalys Garcia; Joci A.N. Macedo; Ricardo Tiburcio; Gustavo Zaparoli; Johana Rincones; Livia M.C. Bittencourt; Geruza O. Ceitta; Fabienne Micheli; Abelmon Gestiera; Andre a C. Mariano; Marlene A. Schiavinato; Francisco J. Medrano; Lyndel W. Meinhardt; Goncalo A.G. Pereira; Julio C.M. CascardoThe hemibiotrophic basidiomycete Moniliophthora perniciosa causes witches’ broom disease of Theobroma cacao. Analysis of the M. perniciosa draft genome led to the identification of three putative genes encoding necrosis and ethylene-inducing proteins (MpNEPs), which are apparently located on the same chromosome. MpNEP1 and 2 have highly similar sequences and are able to induce necrosis and ethylene emission in tobacco and cacao leaves. MpNEP1 is expressed in both biotrophic and saprotrophic mycelia, the protein behaves as an oligomer in solution and is very sensitive to temperature. MpNEP2 is expressed mainly in biotrophic mycelia, is present as a monomer in solution at low concentrations (<40 mM) and is able to recover necrosis activity after boiling. These differences indicate that similar NEPs can have distinct physical characteristics and suggest possible complementary roles during the disease development for both proteins. This is the first report of NEP1-like proteins in a basidiomycete.Item Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches’ broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins(2009) Francisco Javier Medrano; Odalys Garcıa Cabrera; Gustavo Zaparoli; Goncalo Guimaraes Pereira; Gustavo Lacerda; Ricardo TiburcioThe hemibiotrophic basidiomycete Moniliophthora perniciosa is the causal agent of witches’ broom disease in cacao. This is a dimorphic species, with monokaryotic hyphae during the biotrophic phase, which is converted to dikaryotic mycelia during the saprophytic phase. The infection in pod is characterized by the formation of hypertrophic and hyperplasic tissues in the biotrophic phase, which is followed by necrosis and complete degradation of the organ. We found at least five sequences in the fungal genome encoding putative proteins similar to cerato-platanin (CP)-like proteins, a novel class of proteins initially found in the phytopathogen Ceratocystis fimbriata. One M. perniciosa CP gene (MpCP1) was expressed in vitro and proved to have necrosis-inducing ability in tobacco and cacao leaves. The protein is present in solution as dimers and is able to recover necrosis activity after heat treatment. Transcription analysis ex planta showed that MpCP1 is more expressed in biotrophic-like mycelia than saprotrophic mycelia. The necrosis profile presented is different from that caused by M. perniciosa necrosis and ethylene-inducing proteins (MpNEPs), another family of elicitors expressed by M. perniciosa. Remarkably, a mixture of MpCP1 with MpNEP2 led to a synergistic necrosis effect very similar to that found in naturally infected plants. This is the first report of a basidiomycete presenting both NEP1-like proteins (NLPs) and CPs in its genome