Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "M.R. Manikantan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Comparative study on infrared radiation and hot air convective drying of coconut: Effect on oil quality features
    (2024) R. Pandiselvam; Sneha Davison; M.R. Manikantan; Anjitha Jacob; S.V. Ramesh; S h a m e e n a Be e g u m , P.P.
    Appropriately dried coconut kernel, or copra, is imperative for oil production to ensure consistent quality, taste, aroma, and nutritional properties of the resultant coconut oil. This research assesses the effects of different drying techniques—hot air drying (HAD), infrared drying (ID), and infrared-assisted hot air drying (IAHAD)—on the quality profile of coconut oil extracted from copra. Coconut kernels were subjected to radiation and convective hot-air drying methods at varying temperatures (50 °C, 60 °C, and 70 °C). The fresh oil sample extracted from copra using different drying techniques exhibited zero peroxide value, indicating high quality. Among the methods, IAHAD at 60 °C was remarkable for producing the highest-grade copra, resulting in superior quality oil with exceptional preservation of essential nutrients. The physical and biochemical properties of the coconut oil produced using IAHAD at 60 °C included specific gravity, refractive index, moisture content, antioxidant capacity, and total phenolic content, all indicating enhanced oil quality.
  • No Thumbnail Available
    Item
    Development and characterization of gelatinized starch doped microcellulose paper from tender coconut (Cocos nucifera L) husk
    (2024) R. Pandiselvam; M.P. Harikrishnan; Anandu Chandra Khanashyam; M. Basil; M. Anirudh; M.R. Manikantan; Anjineyulu Kothakota
    Cellulose-starch based composite papers are could be used as packaging materials due to their biodegradable and renewable properties. In this study, biodegradable composite paper were developed from tender coconut husk with starch as an additive. Potato and corn starch were added to the matrix at a ratio of 5%, 10% and 15% and were evaluated for the mechanical, physical, and structural properties as well as the biodegradability of the biocomposite paper. The tensile strength and the elongation percentage of the developed biocomposite paper varied from 12.45 ± 1.69 MPa to 9.52 ± 4.30 MPa and 9.76 ± 0.99% to 15.52 ± 3.27% respectively. The results indicate a decreasing trend in tensile strength with increasing starch concentration, attributed to reduced hydrogen bonding density. Moisture content analysis shows no significant difference between starch types. The composition of the paper was analyzed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The outcomes demonstrated the existence of robust interactions between the hydroxyl groups of starch and cellulose of coconut husk matrix. Moreover, the material showed a degradation rate of approximately 70% within a 20-day period, demonstrating its suitability for the production of biodegradable material. This study suggests that tender coconut husk is a promising material for the production of paper intended for packaging applications.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback