Browsing by Author "Perez-Nunez, M.T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos(2009) Perez-Nunez, M.T.; Souza, R.; Chan, J.L.; Saenz, L.; Zuniga-Aguilar, J.J.; Oropeza, C.Somatic embryogenesis involves different molecular events including differential gene expression and various signal transduction pathways. One of the genes identified in early somatic embryogenesis is SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK). Cocos nucifera (L.) is one of the most recalcitrant species for in vitro regeneration, achieved so far only through somatic embryogenesis, although just a few embryos could be obtained from a single explant. In order to increase efficiency of this process we need to understand it better. Therefore, the purpose of the present work was to determine if an ortholog of the SERK gene is present in the coconut genome, isolate it and analyze its expression during somatic embryogenesis. The results showed the occurrence of a SERK ortholog referred to as CnSERK. Predicted sequence analysis showed that CnSERK encodes a SERK protein with the domains reported in the SERK proteins in other species. These domains consist of a signal peptide, a leucine zipper domain, five LRR, the Serine- Proline-Proline domain, which is a distinctive domain of the SERK proteins, a single transmembrane domain, the kinase domain with 11 subdomains and the C terminal region. Analysis of its expression showed that it could be detected in embryogenic tissues before embryo development could be observed. In contrast it was not detected or at lower levels in non-embryogenic tissues, thus suggesting that CnSERK expression is associated with induction of somatic embryogenesis and that it could be a potential marker of cells competent to form somatic embryos in coconut tissues cultured in vitro.Item Improved somatic embryogenesis from cocos nucifera (l.) Plumule explants(Society for In Vitro Biology, 2006-02) Perez-Nunez, M.T.; Chan, J.L.; Saenz, L.; Gonzalez, T.; Verdeil, J.L.; Oropeza, C.Coconut is one of the most recalcitrant species to regenerate in vitro. Although previous research efforts using plumule explants have resulted in reproducible somatic embryogenesis, efficiency is only 4 or 10 somatic embryos per plumule without or with a brassinolide treatment, respectively. In order to increase the efficiency of somatic embryogenesis in coconut, two different approaches were evaluated and reported here: secondary somatic embryogenesis and multiplication of embryogenic callus. Primary somatic embryos obtained from plumule explants were used as explants and formed both embryogenic callus and secondary somatic embryos. The embryogenic calluses obtained after three multiplication cycles were capable of producing somatic embryos. The efficiency of the system was evaluated in a stepwise process beginning with an initial step for inducing primary somatic embryogenesis followed by three steps for inducing secondary somatic embryogenesis followed by three steps for embryogenic callus multiplication, and finally production of somatic embryos from callus. The total calculated yield from one plumule was 98 000 somatic embryos. Comparing this to the yield obtained from primary somatic embryogenesis results in about a 50 000-fold increase. When compared to the yield previously reported in the literature with the use of a brassinolide treatment, it is about a 10 000-fold increase in yield. The present protocol represents important progress in improvement in the efficiency of coconut somatic embryo production.