Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "R. Pandiselvam"

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Comparative analysis of biochemical composition of fried coconut chips: influence of thickness and oil type on nutritional attributes
    (2024) R. Pandiselvam; Rupa Krishnan; M. R. Manikantan; Anjitha Jacob; S. V. Ramesh; S h a m e e n a Be e g u m , P.P.
    In recent years, there has been a noticeable rise in the importance of snack items in diets, particularly among children and adolescents who enjoy them socially with friends. Chips, commonly produced through frying, have garnered significant popularity. This study aimed to assess the quality of fried coconut chips of thickness 0.5 mm and 1.4 mm, made using both sunflower oil and coconut oil. Deep frying was conducted at 160 °C for both types of oil. The findings indicated that coconut oil-fried chips, regardless of thickness, exhibited superior sensory attributes (i.e. appearance, colour, crispiness and flavour). All sensory attributes (except appearance) were rated the highest for coconut oil fried chips. The biochemical properties of chips fried in both oils were largely similar, yet coconut oil-fried chips displayed slightly better characteristics compared to their counterparts. For instance, the 0.5 mm thick coconut oil-fried chips were noted for their improved protein content and fat content, leading to a higher overall acceptability of the 0.5 mm thickness.
  • No Thumbnail Available
    Item
    Comparative study on infrared radiation and hot air convective drying of coconut: Effect on oil quality features
    (2024) R. Pandiselvam; Sneha Davison; M.R. Manikantan; Anjitha Jacob; S.V. Ramesh; S h a m e e n a Be e g u m , P.P.
    Appropriately dried coconut kernel, or copra, is imperative for oil production to ensure consistent quality, taste, aroma, and nutritional properties of the resultant coconut oil. This research assesses the effects of different drying techniques—hot air drying (HAD), infrared drying (ID), and infrared-assisted hot air drying (IAHAD)—on the quality profile of coconut oil extracted from copra. Coconut kernels were subjected to radiation and convective hot-air drying methods at varying temperatures (50 °C, 60 °C, and 70 °C). The fresh oil sample extracted from copra using different drying techniques exhibited zero peroxide value, indicating high quality. Among the methods, IAHAD at 60 °C was remarkable for producing the highest-grade copra, resulting in superior quality oil with exceptional preservation of essential nutrients. The physical and biochemical properties of the coconut oil produced using IAHAD at 60 °C included specific gravity, refractive index, moisture content, antioxidant capacity, and total phenolic content, all indicating enhanced oil quality.
  • No Thumbnail Available
    Item
    Development and characterization of gelatinized starch doped microcellulose paper from tender coconut (Cocos nucifera L) husk
    (2024) R. Pandiselvam; M.P. Harikrishnan; Anandu Chandra Khanashyam; M. Basil; M. Anirudh; M.R. Manikantan; Anjineyulu Kothakota
    Cellulose-starch based composite papers are could be used as packaging materials due to their biodegradable and renewable properties. In this study, biodegradable composite paper were developed from tender coconut husk with starch as an additive. Potato and corn starch were added to the matrix at a ratio of 5%, 10% and 15% and were evaluated for the mechanical, physical, and structural properties as well as the biodegradability of the biocomposite paper. The tensile strength and the elongation percentage of the developed biocomposite paper varied from 12.45 ± 1.69 MPa to 9.52 ± 4.30 MPa and 9.76 ± 0.99% to 15.52 ± 3.27% respectively. The results indicate a decreasing trend in tensile strength with increasing starch concentration, attributed to reduced hydrogen bonding density. Moisture content analysis shows no significant difference between starch types. The composition of the paper was analyzed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The outcomes demonstrated the existence of robust interactions between the hydroxyl groups of starch and cellulose of coconut husk matrix. Moreover, the material showed a degradation rate of approximately 70% within a 20-day period, demonstrating its suitability for the production of biodegradable material. This study suggests that tender coconut husk is a promising material for the production of paper intended for packaging applications.
  • No Thumbnail Available
    Item
    Development, evaluation, and optimization of portable pyrolysis system for the production of biochar from tender coconut husk
    (2024) R. Pandiselvam; Athira Shaji; S. V. Ramesh; Sudharshana Sathyanath; M. R. Manikantan; A. C. Mathew
    Tender coconut husk (TCH) is a prominent part of coconut fruit, and it is discarded after consumption of tender coconut water. TCH is made of fibers that comprise lignin (30–42%) and cellulose (54–65%) and also contains traces of tannin and potassium. In this study, development of most feasible and adaptable method for production of biochar from TCH is reported. The method opted for the production of biochar is pyrolysis, and temperature of pyrolysis has a direct correlation with the characteristics of resultant biochar. The main parameters investigated are the size of the reactor, type of fuel, and positioning of the drum. Biochemical parameters of biochar such as moisture content, ash content, pH and electrical conductivity, and total nitrogen content of the product were studied. The results reveal that sample collected from the upper layer of the large-sized reactor kept in upright position and using mature coconut husk as a fuel for biochar production was found to be the best considering the yield and physicochemical properties.
  • No Thumbnail Available
    Item
    Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations
    (2024) R. Pandiselvam; Daliyamol; Syed Imran S; Vinayaka Hegde; M. Sujithra; P.S. Prathibha; V.H. Prathibha; K.B. Hebba
    Unmanned aerial vehicle (UAV) pesticide application in recent years owing to its importance such as time saving, reduction in human drudgery and also reduction in pesticides application rate. UAV has a great potential to address the problem involved in manual chemicals spraying in tall crops like coconut plantation where at present operation performed by manual climbing involves lots of drudgery and life risk. The current study aimed to understand the most influencing spraying parameters, such as spray height and spray time of the UAV sprayer on droplet characteristics such as spray droplet size, spray coverage and spray deposition at different layers (spindle, middle and bottom) of coconut tree canopy. The selected spray height (1, 2 and 3 m) and spray time (5, 8 and 11 s) significantly affects (p < 0.05) the droplet size (μm), spray coverage (%) and spray deposition (μl cm−2). In spray droplet size, the treatment T4, T5, T7 and T8 were recorded recommended droplet size of 50–400 μm in all layer of the coconut tree canopy. In spray coverage, the nearest value for recommended spray coverage of 10–20 % was observed for T1 and T5 treatment in all layer of the coconut tree canopy. The maximum penetration efficiency of 34.41 % had achieved at spray height of 2m and spray time of 8s (treatment T5). Based on performance of selected parameter, the spray height of 2 m and spray time of 8 s (treatment T5) was found best for spraying operation using UAV in coconut tree. The results showed the performance of the UAV offers best alternative for spraying operation on coconut tree and also this system will drastically reduce application time, labour requirement and improved the safety of coconut farmers.
  • No Thumbnail Available
    Item
    Impact of Slice Thickness and Baking Temperature on the Physicochemical Quality and Nutritional Properties of Newly Developed Baked Coconut Chips
    (2024) R. Pandiselvam; Rupa Krishnan; M. R. Manikantan; Anjitha Jacob; S. V. Ramesh; S h a m e e n a Be e g u m , P.P.
    Due to rising health concerns, consumers are increasingly inclined toward reduced-fat products, which have driven the need for nutritious alternatives through modifications in recipes and production processes. Despite the growing popularity of coconut-based products, there is limited research on baked coconut chips, particularly regarding the effects of baking temperatures and product thicknesses. This study addresses this gap by developing baked coconut chips samples (BCSs) as a healthier alternative to traditional fried chips. Baking experiments were conducted at temperatures of 140°C, 160°C, and 180°C, with 160°C identified as optimal for balancing processing time and product quality. The study also compared baked coconut chips with those that were dried and then baked (dried baked coconut chips samples [DBCS]). Among the trials, the 0.5-mm-thick coconut chips baked at 160°C exhibited favorable sensory attributes and notable biochemical properties, including 3.13% moisture content, 1.13% ash, 40.49% fat, and significant antioxidant activity.
  • No Thumbnail Available
    Item
    Infrared-aided hot-air drying of coconut: Impact on drying kinetics and quality metrics
    (2024) R. Pandiselvam; Sneha Davison; M. R. Manikantan; G. Jeevarathinam; Anjitha Jacob; S. V. Ramesh; P. P. Shameena Beegum
    This study explored various drying techniques and temperatures to analyze their effects on the drying kinetics and quality of copra. The initial moisture content of coconut kernels was 50%–55% (w.b.), which decreased to 6%–8% (w.b.) as a result of the drying process. This study focuses on evaluating the individual and hybrid effects of infrared drying (IRD) and hot-air drying (HAD) techniques to enhance the quality of copra. Three drying methods were used: IRD, HAD, and infrared-assisted hot-air drying (IRAHAD). Coconut pieces were subjected to different drying temperatures (50, 60, and 70 C) with a constant air speed of 2 m/s. Optimal results were achieved by employing the IRAHAD method at 60 C, preserving a crucial fat content of 68.4% essential for increased extraction of oil from copra and comparatively high drying rates. In particular, the drying rates in IRAHAD were twice as high as those in IRD and HAD. At a drying temperature of 60 C, the logarithmic model and the diffusion approximation model were deemed the best fit for HAD and IRAHAD, respectively.
  • No Thumbnail Available
    Item
    Physicochemical properties of coconut inflorescence sap (neera) under double wall open heating system
    (2024) R. Pandiselvam; Sudharshana Sathyanath; M. R. Manikantan; S. V. Ramesh; S h a m e e n a Be e g u m , P.P.; Hebbar, K.B
    Utilization of plant sap-derived sugars and syrups, such as palm sugar, birch syrup, maple syrup, and agave syrup, provides versatile alternatives to conventional sweeteners like cane sugar and high-fructose corn syrup, thereby enriching culinary options and catering to diverse consumer preferences. One noteworthy product derived from coconut palm sap is neera, a traditional beverage celebrated for its natural sugars, vitamins, minerals, and bioactive compounds. Its nutritional value and cultural significance make it a cherished component of local diets. It is nutritionally important due to its natural sugars (sucrose, glucose, and fructose), rich in vitamins and minerals (potassium, magnesium, zinc, and iron). The focus of this study is to comprehend the biochemical changes that occur during the conversion of neera into sugar using an open double-jacket cooker. The process entails meticulous monitoring of various parameters, including total soluble solids (TSS), pH levels, total sugar content, reducing sugar content, total phenol content (TPC), antioxidant activity (measured by DPPH and FRAP assays), and ascorbic acid concentration. Throughout the 3 h heating process, samples are collected at 30 min intervals to track the changes in biochemical composition. Continuous stirring and precise temperature control ensure uniform heat transfer and accurate results. The findings reveal significant alterations in biochemical composition, with notable increases observed in TPC and antioxidant activity, possibly attributed to the Maillard reaction. The conversion from neera to coconut sugar yields a range of compositions suitable for various culinary applications, presenting opportunities for entrepreneurship and the development of value-added products. This not only enhances market competitiveness but also fosters economic growth in the food sector.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback