Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Uhrig, H."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Breeding for Nematode and Virus Resistance in Potato via Anther Culture
    (1981) Wenzel, G.; Uhrig, H.
    In Solanum tuberosum the production by parthenogenesis of 2x plants with 24 chromosomes, and the regeneration of microspores of such dihaploids to yield monohaploid (1x) plants is reproducibly possible, at least for some specific genotypes. Experiments are described using tissue culture techniques in an applied breeding program with the main aim of increasing the level of resistance to the potato cyst nematode Globodera pallida (Stone) and to the potato viruses X, Y and leaf roll. These resistances follow quantitative as well as qualitative nodes of inheritance. Using anther culture it is demonstrated that doubled monohaploid clones can be produced which possess the resistance in the homozygous condition. In both ways of inheritance the ratio of resistant clones is rather high. The genotype of the anther donor plant has, however, a strong influence on the total number of androgenetic plants which can be regenerated. Therefore, experiments were initiated with the aim of integrating this capacity for regeneration (tissue culture ability) into valuable genotypes. The results show that the potentiality 'or regeneration is under genetic control and can be utilized by combination breeding. Its inheritance and Physiological basis, as well as the behavior of complete homozygous clones, is discussed.

DSpace software copyright © 2002-2026 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback