Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets
dc.contributor.author | Santhust Kumara | |
dc.contributor.author | Roy N. D’Souza | |
dc.contributor.author | Britta Behrends | |
dc.date.accessioned | 2021-12-29T07:57:43Z | |
dc.date.available | 2021-12-29T07:57:43Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Food Research International 140(2021)109983 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/8593 | |
dc.language.iso | en | en_US |
dc.subject | Theobroma cacao | en_US |
dc.subject | LC-MS | en_US |
dc.subject | Principal component analysis (PCA) | en_US |
dc.subject | Linear discriminant analysis (LDA) | en_US |
dc.subject | Origin classification | en_US |
dc.subject | Feature selection | en_US |
dc.title | Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets | en_US |
dc.type | Article | en_US |