Standalone EST microsatellite mining and analysis tool (SEMAT): for automated EST-SSR analysis in plants

dc.contributor.authorNaganeeswaran Sudalaimuthu Asari
dc.contributor.authorManimekalai Ramaswamy
dc.contributor.authorElain Apshara Subbian
dc.contributor.authorManju Kalathil Palliyarakkal
dc.contributor.authorMalhotra, S.K.
dc.contributor.authorAnitha Karun
dc.date.accessioned2015-07-30T10:40:40Z
dc.date.available2015-07-30T10:40:40Z
dc.date.issued2014
dc.description.abstractPublic databases contain large datasets of plant expressed sequence tags (ESTs) that can be used for mining microsatellite/simple sequence repeat markers. The identification and annotation of these markers take considerable time. Here, we describe an efficient, high-throughput microsatellite mining, and analysis pipeline, standalone EST microsatellite mining and analysis tool (SEMAT). The pipeline bundles sequence trimming, assembly, microsatellite identification, primer selection, and blast annotation, for which it consecutively uses SeqClean, CAP3, MISA, Primer3, and Blast. SEMAT is written using Perl scripts, and it runs under Ubuntu and Fedora Linux. SEMAT is an efficient and timesaving bioinformatics tool to accomplish the high throughput EST-SSR analysis. It is freely available from http://semat. cpcribioinformatics.in/.en_US
dc.identifier.citationTree Genetics & Genomes (2014) 10:1755–1757en_US
dc.identifier.urihttp://hdl.handle.net/123456789/6333
dc.language.isoenen_US
dc.subjectESTen_US
dc.subjectMicrosatelliteen_US
dc.subjectPipelineen_US
dc.subjectToolen_US
dc.titleStandalone EST microsatellite mining and analysis tool (SEMAT): for automated EST-SSR analysis in plantsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
art%3A10.1007%2Fs11295-014-0785-2.pdf
Size:
184.93 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections