Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal
| dc.contributor.author | June Anne Caladcad | |
| dc.contributor.author | Shiela Cabahug | |
| dc.date.accessioned | 2021-03-04T06:40:33Z | |
| dc.date.available | 2021-03-04T06:40:33Z | |
| dc.date.issued | 2020 | |
| dc.identifier.citation | Computers and Electronics in Agriculture 172 (2020) 105327 | en_US |
| dc.identifier.uri | http://hdl.handle.net/123456789/8112 | |
| dc.language.iso | en | en_US |
| dc.subject | coconut | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | Fruit classification | en_US |
| dc.subject | Acoustic signal | en_US |
| dc.subject | Intelligent systems | en_US |
| dc.title | Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal | en_US |
| dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Determining Philippine Coconut Maturity Level Using Machine Learning Algorithms.pdf
- Size:
- 3.18 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: